
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 12-2042980

Parallel Log Structured File System Update

Meghan (Wingate) McClelland, HPC-5;
Gary A. Grider, HPC-DO; Adam Manzanares, HPC-5;
John Bent, EMC Corporation

To improve the checkpoint bandwidth of critical applications at LANL we developed the Parallel Log
Structured File System (PLFS)[1]. PLFS is a transformative I/O middleware layer placed within our
software stack that transparently rearranges a challenging workload, a concurrently written single
shared file, into an optimized workload, non concurrently written non-shared component pieces. This
reorganized I/O has made write size a non-issue and improved checkpoint performance by orders
of magnitude measured to be as much as 150x with improvements in write, read, and meta data
performance of our I/O workloads. Under a CRADA with EMC Corporation, LANL and EMC have
successfully demonstrated a prototype “burst buffer” and are working together to further enhance,
design, build, test, and deploy PLFS. Future work for PLFS includes integration with the Scalable
Checkpoint/Restart (SCR) Library, further improving metadata rates, and capturing semantic information
about the data streams.

The original architecture of the Parallel Log Structured File System
(PLFS) was heavily write optimized and limited read performance.

We quickly noticed that with increasing process counts our effective
read bandwidth was suffering due to read open times so we developed
several techniques to address this problem (Fig 1), which are to
aggregate the global index on

•	 read open with one process and broadcast this result to every other
process (Index Broadcast);

•	write close, and on read open broadcast the results of the aggregation
from one process to all processes (Index Flatten); and

•	 read open leveraging all processes (Parallel Index Read).

All three share the common property of reducing the number of
input/output (I/O) operations that must be conducted by the parallel
file system. During a checkpoint read the compute and high speed
interconnect resources of cluster machines are largely idle. Our
solutions leverage both of these resources and to some degree reduce

the amount of concurrent access to files as
compared to the original design of PLFS.
Bandwidth improvements and faster open and
close times are realized with all three methods
(Fig. 2).

Metadata management is a difficult challenge
for many current parallel file systems. As

we move into exascale-class computing, compute systems will have
increased component counts which will increase metadata workloads,
exacerbating the metadata challenges that we currently face. The
flexibility granted by the PLFS layer allows us to alleviate metadata
challenges by spreading the I/O workload over multiple physical
locations (hashing), turning independent metadata servers into a
federated system of servers which improces metadata performance
(Fig. 3), and spreading workloads over multiple directories solving
the problem of massive-scale file creation in single directories. This
increased metadata performance has been demonstrated across two
classes of workloads that together represent the checkpoint point I/O
patterns of a large class of applications.

The promising effectiveness and flexibility of PLFS has made it
necessary to develop PLFS into production software; a regression test
suite and quality assurance (QA) procedures have led to improvements
in robustness, performance (including archiving and restarting with
varying number of processors), and new features. PLFS is in the process
of being deployed on current production systems and our plans for
exascale I/O include the use of PLFS.

Recently, LANL announced the signing of a new umbrella CRADA
with EMC Corporation. As part of this CRADA, LANL and EMC are
working together to enhance, design, build, test, and deploy PLFS.
This collaboration is focused on support for the Department of Energy’s
exascale initiative and other data-intensive programs, and is aimed
at boosting high-performance computing capability to ensure efficient

Fig. 1. Index Aggregation Techniques.
The figures below represent the
workloads generated on the parallel
file system and cluster interconnect by
PLFS using the original design and
our three solutions to improve the read
bandwidth of PLFS.

www.lanl.gov/orgs/adtsc/publications.php 81

INFORMATION SCIENCE AND TECHNOLOGY

resource utilization on the largest
supercomputers in the world.

The first deliverable for this CRADA
was the demonstration at the 2011
Supercomputing Conference of a
prototype “burst-buffer” storage
stack (Fig. 4). Economic projections
into the exascale era dictate that the
storage stack be re-engineered to

incorporate an intermediary layer between the compute nodes and the
disk-based scratch storage space. This prototype burst-buffer system
was a surprisingly effective exploration within this new architectural
space. By accomplishing a complicated integration of both new hardware
and software elements in a very short timeframe, LANL and EMC
demonstrated their ability to work together closely and effectively.

Using a wind-turbine simulation and visualization workload, the
demonstration showed much faster data dump times as well as the
ability to co-process the visualization with the simulation, as opposed to
the current post-processing model. The very encouraging performance
results of this demonstration were of great interest to the community
and necessitate more investigation of the burst-buffer concept for
exascale computing.

The PLFS project is now looking to further improve metadata rates.
Large metadata workloads are created both by user N-N workloads
and also by PLFS as it transforms user N-1 workloads. For an exascale

system, metadata ingest rates will become a horrible
bottleneck as N approaches one billion. Current efforts
are ongoing to aggregate multiple logical users’ files into
a smaller number of physical files to reduce the metadata
burden. In addition, the internal PLFS metadata architecture
is currently being re-engineered for exascale workloads. One
method currently being explored is to use the speed of the
compute interconnect workload to shuffle small amounts of
data to transform per-process heterogeneous workloads into
homogenous ones. This regularity will allow a huge reduction
of PLFS’s internal metadata.

As part of a tri-lab effort, PLFS is currently being integrated
with Scalable Checkpoint/Restart (SCR) [2], a checkpoint

Special Thanks
Project contributions by the HPC-5 I/O team, the HPC-3 HPC Tools team,
and Garth Gibson.

[1] Bent, J. et al., Proc Conf HPC Networking Storage Anal,
Article 21; DOI=10.1145/1654059.1654081 http://doi.acm
org/10.1145/1654059.16540812009 (2009).
[2] Moody, A. et al., Proc 2010 ACM/IEEE Int Conf HPC Networking Storage
Anal, 1 (2010).

Funding Acknowledgments
DOE NNSA, Advanced Simulation and Computing Program; National Science
Foundation

For more information contact Meghan W. McClelland at meghan@lanl.gov

Fig. 3. Graphs of results from a
hashed metadata study. In most cases,
multiple metadata servers (hashing)
dramatically improve file open time.
Note that smaller open times are better,
so lower lines are better performing for
these graphs.

in-memory system for N-N codes
developed at LLNL.

Finally, the most ambitious and
important PLFS project currently
ongoing is to capture semantic
information about the data streams. This
will allow PLFS to know not just where
data is stored but what data is stored
where. With this knowledge, analysis
and visualization workloads can query
high-level semantic data knowledge and
avoid costly data filtering which can
reduce the amount of data read by orders
of magnitude. This outcome is related to
active storage projects in the past and
can enable scientific workloads to
benefit from programming models
similar to map-reduce.

PLFS is open source software
available from
http://sourceforge.net/projects/plfs

Fig. 2. The graph on the left illustrates
the time taken to aggregate the global
index of a PLFS file with lower times
representing better performance. Note:
the write close times are included in
the graph because the Index Flatten
technique aggregates the global index
on the close of a newly written file.
The graph on the right illustrates
the effective read bandwidth of the
original PLFS design and our read
optimizations. Fig. 4. Graphs of prototype “burst-

buffer” demonstration at the 2011
Supercomputing Conference show much
faster data dump times as well as the
ability to co-process the visualization
with the simulation (bottom graph), as
opposed to the current post-processing
model (top graph).

http://doi.acm.org/10.1145/1654059.16540812009
http://doi.acm.org/10.1145/1654059.16540812009
mailto:meghan@lanl.gov
http://sourceforge.net/projects/plfs

